Ring Attention with Blockwise Transformers for Near-Infinite Context

Hao Liu, Matei Zaharia, Pieter Abbeel *UC Berkeley ICLR 2024*

Presented by Jiankun Wang Sep. 18 2024

Overview

- 1. Background: Long-sequence Training
- 2. Blockwise Transformer
- 3. Ring Attention
- 4. Follow-up Studies: load-balance, communication efficiency

The Era of Long-context LLMs

- **LLM products are increasingly competing for their long-context**
- Benefits of long-context ability:
	- 1) Insert an entire book into LLM; (The 1st Harry Potter book is ~100k tokens)
	- 2) Support multimodal understanding; (1440 frames from a video is ~282k tokens)

Unlocking Long-context Capabilities via Long-sequence Training

- How to enable the long-sequence support in inference?
- One effective solution: scaling up the context window size S in training.
- Models that trained with long context-length exhibits more competitive accuracy.

• **Issue**: high memory demands.

Memory Wall: High Activation Cost

- With the increase of the context window, the memory occupied by activations constitutes a significant amount of the total memory.
	- A 7B LLM's Memory Footprints in Training (S: context window size) with Flash Attention

Introduction of Ring Attention

Basically:

- Divide input sequence into chunks, and send each chunk onto a device.
- So that the activation memory pressure is distributed onto different devices.

Technical challenges:

- **Preserving Semantics:** After dividing into chunks, how to maintain the attention calculation dependency of the original sequence?
- **Efficient Weak-Scaling**: We wish that when doubling both #devices and context window size, computation time and memory cost per device are about consistent.

Existing Works: alleviating activation cost

- 1. Activation Recomputation
- Discarding activations within some layers during the forward;
- Recomputing them during the backward.
- **Weakness**: full recomputation can introduce 30~40% overhead in computation time.

Korthikanti et al. "Reducing Activation Recomputation in Large Transformer Models". May 2022.

Existing Works: alleviating activation cost

- 2. Megatron Sequence Parallel
- Pair with Tensor Parallel; say TP degree is tp
- Split the sequence into tp parts in LayerNorm and Dropout layers.
- Activation is reduced by $1/tp$.
- **Weakness**: all-gather and reduce-scatter introduce high overhead, which is hard to overlap with the computation.

Korthikanti et al. "Reducing Activation Recomputation in Large Transformer Models". May 2022.

- Idea: divide QKV into chunks.
- For each query chunk, its corresponding attention output is computed by iterating over all KV chunks.

Blockwise Computation

Divide Q , K , V in (b, a, s, d) into B uniform chunks, i.e. Q_i , K_i , V_i in $(b, a, \frac{s}{B}, d)$. For any query chunk Q_i , its attention output is (Omit the scaling factor \sqrt{d} for simplicity)

$$
attention(Q_i, K, V) = softmax(exp(Q_i K^T))V = softmax([exp(Q_i K_1^T) \dots exp(Q_i K_B^T)])\begin{bmatrix} V_1 \\ \vdots \\ V_B \end{bmatrix}
$$

=
$$
\begin{bmatrix} \frac{exp(Q_i K_1^T)}{\sum_{j=1}^B exp(Q_i K_j^T)} & \cdots & \frac{exp(Q_i K_B^T)}{\sum_{j=1}^B exp(Q_i K_j^T)} \end{bmatrix} \begin{bmatrix} V_1 \\ \vdots \\ V_B \end{bmatrix} = \frac{\sum_{j=1}^B exp(Q_i K_j^T) V_j}{\sum_{j=1}^B exp(Q_i K_j^T)}
$$

Rewrite it as
$$
\frac{\sum_{j=1}^B A_j}{\sum_{j=1}^B B_j},
$$
where $A_j = exp(Q_i K_j^T) V_j, B_j = exp(Q_i K_j^T)$, which are the output of blockwise computation.

Blockwise Computation

Divide Q , K , V in (b, a, s, d) into B uniform blocks, i.e. Q_i , K_i , V_i in $(b, a, \frac{s}{B}, d)$. For any query block Q_i , its attention output is

$$
attention(Q_i, K, V) = \frac{\sum_{j=1}^{B} A_j}{\sum_{j=1}^{B} B_j},
$$

where $A_j = \exp(Q_i K_j^T) V_j, B_j = \exp(Q_i K_j^T)$.

Therefore, blockwise computation

(outer loop) iterate over all Q blocks: (inner loop) iterate over all KV blocks: for each pair of K_i , V_i , record A_i and B_i . combine them to get the attention output for the query block.

Optimization: Avoiding numerical issue by substracting the maximum.

$$
attention(Q_i, K, V) = \frac{\sum_{j=1}^{B} \exp(Q_i K_j^T) V_j}{\sum_{j=1}^{B} \exp(Q_i K_j^T)}
$$

$$
= \frac{\sum_{j=1}^{B} \exp(Q_i K_j^T - \max Q_i K_j^T) V_j}{\sum_{j=1}^{B} \exp(Q_i K_j^T - \max Q_i K_j^T)}
$$

(outer loop) iterate over all Q blocks: (inner loop) iterate over all KV blocks: for each pair of K_i , V_i , record A_i , B_i and the local maximum. combine them to get the attention output for the query block.

Ring Attention: Communication in a Ring-style

Each host sends key-value blocks to the next host while receives key-value blocks from the preceding host.

Key and Value Inner Loop

Ring Attention: Communication in a Ring-style

Overlapping

Assume that each host has F FLOPS and B bandwidth. Block size denoted as c and hidden size as d .

To achieve an overlap between communication and computation.

Require FLOPS > communication latency, i.e. $\frac{4dc^2}{r}$ \overline{F} $>\frac{4cd}{R}$ &

 \Rightarrow block size $c > \frac{F}{R}$ $\frac{F}{B}$.

> Table 2: Minimal sequence length needed on each device. Interconnect Bandwidth is the unidirectional bandwidth between hosts, i.e., NVLink / InfiniBand bandwidth between GPUs and ICI bandwidth between TPUs. The minimal block size required $c = FLOPS/B$ andwidth, and minimal sequence length $s = 6c$.

Ring Attention: Memory Requirement

Block size denoted as c and hidden size as d .

A self-attention's activation memory consists of (in BF16):

- current query, key and value blocks
- two block sizes for receiving key and value blocks.
- one block for attention output

Each block is $2cd$ bytes, so $12cd$ bytes in total.

• Linear memory scaling with respect to the block size c, and is independent of the input sequence length s.

Evaluations

Setup:

- Models: LLaMA1 3/7/13/30B
- Full gradient checkpointing
- Full precision instead of mixed precision training

Evaluations contain:

Given the same #devices with baselines,

- 1) maximum sequence length supported.
- 2) model flops utilization (mfu).

Evaluation: max sequence lenth

Baselines: FSDP Ring Attention: FSDP + Ring-attention

• Linear scaling the context length with #devices.

Evaluation: mfu

• Even though Ring Attention trains much longer context sizes, it still maintains MFU.

Strengths and Weaknesses

Strengths:

1. Allow the context length scale linearly with #devices while maintaining performance.

- 2. Allow overlapping computation with communication.
- 3. Orthogonal to other optimizations like Flash-attention and other parallel strategies. **Weakness:**
- **1.** Not load-balanced when applying a causal attention mask

Follow-up Studies: Load-balance

Problem: (a) rank3 has more calculation than rank0. Solution: (b) all gpu will have the same amount of calculation, and the decrease by half.

Gu et al. "LoongTrain: Efficient Training of Long-Sequence LL

Improvements

Improvements:

- 1. Consider grouped-query attention (GQA) instead of multi-head attention (MHA).
- 2. Combinations with other context parallel stragegies.

Thank you!

Presented by Jiankun Wang Sep. 18 2024