
Ring Attention with Blockwise
Transformers for Near-Infinite Context

Hao Liu, Matei Zaharia, Pieter Abbeel
UC Berkeley ICLR 2024

Presented by Jiankun Wang
Sep. 18 2024

Overview

1. Background: Long-sequence Training
2. Blockwise Transformer
3. Ring Attention
4. Follow-up Studies: load-balance, communication efficiency

The Era of Long-context LLMs

Source: Google Blog

• LLM products are increasingly competing for their long-context capability.
• Benefits of long-context ability:

1) Insert an entire book into LLM;
(The 1st Harry Potter book is
~100k tokens)

2) Support multimodal
understanding; (1440 frames
from a video is ~282k tokens)

https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/

Unlocking Long-context Capabilities via Long-sequence Training

• How to enable the long-sequence support in inference?
• One effective solution: scaling up the context window size 𝑆 in training.

• Models that trained with long context-length exhibits more competitive accuracy.

• Issue: high memory demands.

Memory Wall: High Activation Cost

• With the increase of the context window, the memory occupied by
activations constitutes a significant amount of the total memory.

A 7B LLM’s Memory Footprints in Training (S: context window size)
with Flash Attention

Mem. Type S=4k S=64k S=1M
Parameters 13.5 GB 13.5 GB 13.5 GB

Gradients 27 GB 27 GB 27 GB
Optimizer
States

81 GB 81 GB 81 GB

Activations 18.5 GB (x1) 296 GB (x16) 4750 GB (x256)
Act./Total 13% 70% 97.5%

Introduction of Ring Attention

Basically:
• Divide input sequence into chunks, and send each chunk onto a device.
• So that the activation memory pressure is distributed onto different devices.

Technical challenges:
• Preserving Semantics: After dividing into chunks, how to maintain the

attention calculation dependency of the original sequence?
• Efficient Weak-Scaling: We wish that when doubling both #devices and

context window size, computation time and memory cost per device are
about consistent.

Existing Works: alleviating activation cost

1. Activation Recomputation

• Discarding activations within some layers during the forward;

• Recomputing them during the backward.

• Weakness: full recomputation can introduce 30~40% overhead in

computation time.

Korthikanti et al. “Reducing Activation Recomputation in Large Transformer Models”. May 2022.

Existing Works: alleviating activation cost

2. Megatron Sequence Parallel

• Pair with Tensor Parallel; say TP degree is 𝒕𝒑
• Split the sequence into 𝒕𝒑 parts in LayerNorm and Dropout layers.
• Activation is reduced by 1/𝒕𝒑.
• Weakness: all-gather and reduce-scatter introduce high overhead,

which is hard to overlap with the computation.

Korthikanti et al. “Reducing Activation Recomputation in Large Transformer Models”. May 2022.

Ring Attention: Blockwise Computation for Attention

• Idea: divide QKV into chunks.
• For each query chunk, its corresponding attention output is computed by

iterating over all KV chunks.

Ring Attention: Blockwise Computation for Attention

Blockwise Computation

Divide 𝑄,𝐾, 𝑉 in (𝑏, 𝑎, 𝑠, 𝑑) into 𝐵 uniform chunks, i.e. 𝑄!, 𝐾!, 𝑉! in (𝑏, 𝑎, "
#
, 𝑑).

For any query chunk 𝑄!, its attention output is
(Omit the scaling factor 𝑑 for simplicity)

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄!, 𝐾, 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 exp 𝑄!𝐾$ 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 exp 𝑄!𝐾%$ … exp 𝑄!𝐾#$
𝑉%
⋮
𝑉#

=
exp(𝑄!𝐾%$)

∑&'%# exp(𝑄!𝐾&$)
…

exp(𝑄!𝐾#$)
∑&'%# exp(𝑄!𝐾&$)

𝑉%
⋮
𝑉#

=
∑&'%# exp 𝑄!𝐾&$ 𝑉&
∑&'%# exp(𝑄!𝐾&$)

Rewrite it as
∑!"#
$;!

∑!"#
$ <!

,

where 𝐴& = exp 𝑄!𝐾&$ 𝑉&, 𝐵& = exp 𝑄!𝐾&$, which are the output of blockwise computation.

Ring Attention: Blockwise Computation for Attention

Blockwise Computation

Divide 𝑄,𝐾, 𝑉 in (𝑏, 𝑎, 𝑠, 𝑑) into 𝐵 uniform blocks, i.e. 𝑄!, 𝐾!, 𝑉! in (𝑏, 𝑎, "
#
, 𝑑).

For any query block 𝑄!, its attention output is

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄!, 𝐾, 𝑉 =
∑!"#
$;!

∑!"#
$ <!

,

where 𝐴& = exp 𝑄!𝐾&$ 𝑉&, 𝐵& = exp 𝑄!𝐾&$.

Therefore, blockwise computation

(outer loop) iterate over all Q blocks:
 (inner loop) iterate over all KV blocks:

 for each pair of 𝐾!, 𝑉!, record 𝐴! and 𝐵!.
 combine them to get the attention output for the query block.

Ring Attention: Blockwise Computation for Attention

Optimization: Avoiding numerical issue by substracting the maximum.

(outer loop) iterate over all Q blocks:
 (inner loop) iterate over all KV blocks:

 for each pair of 𝐾!, 𝑉!, record 𝐴!, 𝐵! and the local maximum.
 combine them to get the attention output for the query block.

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄!, 𝐾, 𝑉 =
∑!"#
$ >?@ A%B!

& C!
∑!"#
$ >?@(A%B!

&)

=
∑DEF< exp 𝑄G𝐾DH −max𝑄G𝐾DH 𝑉D
∑DEF< exp(𝑄G𝐾DH −max𝑄G𝐾DH)

Ring Attention: Communication in a Ring-style

Each host sends key-value blocks to the next host while receives key-value
blocks from the preceding host.

Ring Attention: Communication in a Ring-style

Overlapping
Assume that each host has 𝐹 FLOPS and 𝐵 bandwidth.
Block size denoted as 𝑐 and hidden size as 𝑑.
To achieve an overlap between communication and computation.

Require FLOPS > communication latency, i.e. "#$
!

% > "$#
&

⟹ block size 𝑐 > %
&

.

Ring Attention: Memory Requirement

A self-attention’s activation memory consists of (in BF16):
• current query, key and value blocks
• two block sizes for receiving key and value blocks.
• one block for attention output
Each block is 2𝑐𝑑 bytes, so 12𝑐𝑑 bytes in total.

Block size denoted as 𝑐 and hidden size as 𝑑.

• Linear memory scaling with respect to the block size c, and is independent of
the input sequence length s.

Evaluations

Setup:
• Models: LLaMA1 3/7/13/30B
• Full gradient checkpointing
• Full precision instead of mixed precision training

Evaluations contain:
Given the same #devices with baselines,
1) maximum sequence length supported.
2) model flops utilization (mfu).

Baselines require at least 𝑂(𝑠)
memory cost, while Ring
Attention 𝑂(𝑐).

Evaluation: max sequence lenth

Baselines: FSDP
Ring Attention: FSDP + Ring-attention

• Linear scaling the context length with #devices.

Evaluation: mfu

• Even though Ring Attention trains much longer context sizes, it still
maintains MFU.

Strengths and Weaknesses

Strengths:
1. Allow the context length scale linearly with #devices while maintaining
performance.
2. Allow overlapping computation with communication.
3. Orthogonal to other optimizations like Flash-attention and other parallel strategies.
Weakness:
1. Not load-balanced when applying a causal attention mask

Follow-up Studies: Load-balance

NVIDIA TransformerEngine

Gu et al. “LoongTrain: Efficient Training of Long-Sequence LLMs with Head-Context Parallelism”. Jun 2024.

Problem: (a) rank3 has more calculation than rank0.
Solution: (b) all gpu will have the same amount of calculation, and theoratically the latency should be
decrease by half.

https://github.com/NVIDIA/TransformerEngine

Improvements

Improvements:
1. Consider grouped-query attention (GQA) instead of multi-head attention (MHA).
2. Combinations with other context parallel stragegies.

Thank you!

Presented by Jiankun Wang
Sep. 18 2024

